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compared with the observations of Fahlenbrach 
and co-workers. It is concluded that the observed 
anisotropy can be rationalized in terms of the slip­
induced directional order theory. 
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APPENDIX 

I. CALCULATION OF BB-PAIRS RESULTING FROM 

{11 O} < 111 ) SLIP IN A B2 STRUCTURE 

(a) Long-range order - nearest-neighbor case 

The long-range ordered B2 structure, Fig. l(a), con­
sists of two simple cubic sublattices rx and {3. The 
total number of BB nearest-neighbor atom pairs 
in any direction is given by 

NBB = N apPBB (rx{3) + NaaPBB(rxrx) + NpPPBB (f3{3) , (AI) 

where N ap, N aa' and N pp are the number of bonds 
joining rx and {3, rx and rx, and {3 with {3 sites, respec­
tively; and PBB (rx{3) , PBB(rxrx) and PBB(f3{3) are 
respectively the probabilities of a BB pair associated 
with rx{3, rxrx, and {3{3 bonds. 

From the definition of the Bragg and Williams 
LRO parameter S24 

s = ra-xA = rp- x B (A2) 
1-xA 1-xB ' 

where 
ra = fraction of rx sites (rightly) occupied by A 

atoms 
rp = fraction of {3 sites (rightly) occupied by B 

atoms 
XA = fraction of A atoms in the lattice 
XB = fraction of B atoms in the lattice, 
and the definitions 
Wa = 1- ra = fraction of rx sites (wrongly) occupied 

by B atoms, 
wp = 1- r p = fraction of {3 sites (wrongly) occupied 

by A atoms, 
we have25

, for XA=XB=t, 

PBB(rxa) = w; = *(1-S)2 

PBB({3{3) = r; = HI + S)2 

PBB (rx{3) = warp = *(1-S2) . 

(A3) 

In the undeformed condition, the distribution of 
bonds in any of the four nearest-neighbor < 111 ) 
directions of the two cells of Fig. l(a), consists of 
Nap = 4, N aa = N pp = O. Hence N BB = 4PBB (rx{3) as 
calculated from eqn. (AI). 

Consider now that a one-step slip has occurred 
on successive (110) planes in the [Ill] direction, 
the configuration of Fig. l(b) is obtained. In [Ill] 
and [lI1], which lie on the slip plane, there is no 
change in pair distribution. Along [III] or [111], 
which connects the slip planes, the distribution is 
changed to N aa =Npp=2, N ap=O. Thus the num­
ber of BB pairs becomes N BB = 2PBB (rxrx) + 2PBB({3{3). 
The increase in BB pairs in [II 1] or [111] as a 
result of slip is then 

l:!.NBB = 2PBB(rxrx) + 2PBB ({3{3) - 4PBB (rx{3) 
= 2S2 (A4) 

upon application of eqns. (A3). Per unit (110) area, 
we have l:!.N BB = S2 /a2 .J2. A similar expression has 
been derived previously by Brown and Herman 26

. 

(b) Short-range order - nearest-neighbor case 

In the short-range ordered lattice, the nearest­
neighbor bonds are no longer identified by rx and {3 
sites. In this case, the number of BB pairs is given 
by 

NBB = n<PBB ) (A5) 

where n is the number of bonds and <PBB ) is the 
average probability of a bond being a BB pair. The 
value of <PBB ) is obtained from the Bethe SRO 
parameter (j25 : 

<PAB ) -2XAXB 
(j = (A6) 

<PAB,max) -2xAXB' 

where <PAB) is the average probability of a bond 
being AB, and <PAB,max) is the value of <PAB ) at 
maximum order. For XA=XB=t, <PAB,max) =l 
and thus 

(A7) 

The quantities <PAB ) and <PBB) are related by the 
equation 1 ? 

(A8) 

Hence 

<PBB ) = *(1- (j) . (A9) 

In the two unit cells of Fig. 1 (a), there are 4<PAB ) = 
1 - (j BB pairs in any of the four < 111 ) directions. 
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After (110) [Ill] slip, Fig. l(b), the distribution in 
[Ill] and [111] remains unchanged. In [III] 
or [111], u=O. Hence the number of BB pairs 
induced by slip is ~N BB = u, or u/2a2.)2 per unit 
(110) area, in the [ITl] or [111] direction. 

(c) Long-range order - next-nearest-neighbor case 

There are three (100) next-nearest-neighbor direc­
tions. One of these, [001], lies on the slip plane, 
(110), and is not disturbed by slip. The other two, 
[010] and [100], will alter the atom pair distribu­
tion after slip. 

In the two unit cells of Fig. lea), we have 
Naa=Npp=2, NaP=O before slip, where Naa etc. 
are now referred to next-nearest-neighbor bonds. 
After slip, Fig. 1 (b), Naa=Npp=O, Nap=4 in [010] 
or [100]. Hence the gain in BB pairs in either of 
these two directions is 

~N BB = 4PBB(ap) - 2PBB(aa) - 2PBB(fJ{J) = - 2S2 , 
(AlO) 

or - S2/a2.J2 per unit (110) area. 

(d) Short-range order - next-nearest-neighbor case 

For the next-nearest-neighbor case, the value of 
<PAD,max) in eqn. (A6) is zero, as complete order 
results in like-atom pairs in all NNN bonds. We 
then have, from eqn. (A6), 

u2 =1-2<PAB), (All) 

with u 2 denoting the SRO parameter for the NNN 
case. With the aid of eqn. (AS), eqn. (All) becomes 

<PBB) = !-(l + u 2)' (A12) 

Thus, from Fig. 1 (a), the number of BB pairs in 
[010] or [100] is 4<PBB) = 1 +U2' After slip, 
U2 =0. Hence the number of BB pairs gained by 
slip is ~N BB = - U 2, or - u 2/2a2.)2 per unit (110) 
area. 

2. CALCULATION OF BB-PAIRS RESULTING FROM 

{112} <Ill) SLIP IN A B2 STRUCTURE 

(a) Long-range order - nearest-neighbor case 

In the undeformed condition, there are two a{J 
bonds per unit cell in each of four (111) NN 
directions. After slip, these bonds change to an aa 

bond and a {J{J bond in the three <111) directions 
other than the slip direction. Hence ANBB = 

PBB(aa) + PBB({J{J) - 2PBB(a{J). When values of eqns. 
(A3) are entered, we obtain ~NBB=S2, or S2/a2.J6 
per unit {112} area. 

(b) Short-range order - nearest-neighbor case 

Here, in the undeformed state, the two bonds per 
cell in each <111) direction contribute 2<PBB) 
pairs of BB bonds. From eqn. (A9), <PBB) = (1- u)/ 
4. After slip, u=O and the gain in BB bonds is 
~NBB=U/2, or u/2a2.J6 per unit {112} area, in the 
three < 111) directions other than the slip direction. 
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