compared with the observations of Fahlenbrach and co-workers. It is concluded that the observed anisotropy can be rationalized in terms of the slipinduced directional order theory.

ACKNOWLEDGEMENTS

The author wishes to thank A. T. English and J. H. Wernick for valuable discussions.

APPENDIX

1. Calculation of BB-pairs resulting from $\{110\}\langle 111\rangle$ SLIP IN A $B 2$ STRUCTURE
(a) Long-range order - nearest-neighbor case

The long-range ordered $B 2$ structure, Fig. 1(a), consists of two simple cubic sublattices α and β. The total number of BB nearest-neighbor atom pairs in any direction is given by
$N_{\mathrm{BB}}=N_{\alpha \beta} P_{\mathrm{BB}}(\alpha \beta)+N_{\alpha \alpha} P_{\mathrm{BB}}(\alpha \alpha)+N_{\beta \beta} P_{\mathrm{BB}}(\beta \beta),(\mathrm{A} 1)$
where $N_{\alpha \beta}, N_{\alpha \alpha}$, and $N_{\beta \beta}$ are the number of bonds joining α and β, α and α, and β with β sites, respectively; and $P_{\mathrm{BB}}(\alpha \beta), P_{\mathrm{BB}}(\alpha \alpha)$ and $P_{\mathrm{BB}}(\beta \beta)$ are respectively the probabilities of a BB pair associated with $\alpha \beta, \alpha \alpha$, and $\beta \beta$ bonds.

From the definition of the Bragg and Williams LRO parameter s^{24}

$$
\begin{equation*}
s=\frac{r_{\alpha}-x_{\mathrm{A}}}{1-x_{\mathrm{A}}}=\frac{r_{\beta}-x_{\mathrm{B}}}{1-x_{\mathrm{B}}}, \tag{A2}
\end{equation*}
$$

where
$r_{\alpha}=$ fraction of α sites (rightly) occupied by A atoms
$r_{\beta}=$ fraction of β sites (rightly) occupied by B atoms
$x_{\mathrm{A}}=$ fraction of A atoms in the lattice
$x_{\mathrm{B}}=$ fraction of B atoms in the lattice,
and the definitions
$w_{\alpha}=1-r_{\alpha}=$ fraction of α sites (wrongly) occupied by B atoms,
$w_{\beta}=1-r_{\beta}=$ fraction of β sites (wrongly) occupied by A atoms,
we have ${ }^{25}$, for $x_{A}=x_{B}=\frac{1}{2}$,

$$
\begin{align*}
& P_{\mathrm{BB}}(\alpha \alpha)=w_{\alpha}^{2}=\frac{1}{4}(1-s)^{2} \\
& P_{\mathrm{BB}}(\beta \beta)=r_{\beta}^{2}=\frac{1}{4}(1+s)^{2} \tag{A3}\\
& P_{\mathrm{BB}}(\alpha \beta)=w_{\alpha} r_{\beta}=\frac{1}{4}\left(1-s^{2}\right) .
\end{align*}
$$

In the undeformed condition, the distribution of bonds in any of the four nearest-neighbor 〈111〉 directions of the two cells of Fig. 1(a), consists of $N_{\alpha \beta}=4, N_{\alpha \chi}=N_{\beta \beta}=0$. Hence $N_{\mathrm{BB}}=4 P_{\mathrm{BB}}(\alpha \beta)$ as calculated from eqn. (A1).

Consider now that a one-step slip has occurred on successive (110) planes in the [111] direction, the configuration of Fig. 1(b) is obtained. In [111] and [111], which lie on the slip plane, there is no change in pair distribution. Along [111] or [111], which connects the slip planes, the distribution is changed to $N_{\alpha \alpha}=N_{\beta \beta}=2, N_{\alpha \beta}=0$. Thus the number of BB pairs becomes $N_{\mathrm{BB}}=2 P_{\mathrm{BB}}(\alpha \alpha)+2 P_{\mathrm{BB}}(\beta \beta)$. The increase in BB pairs in [111] or [111] as a result of slip is then

$$
\begin{align*}
\Delta N_{\mathrm{BB}} & =2 P_{\mathrm{BB}}(\alpha \alpha)+2 P_{\mathrm{BB}}(\beta \beta)-4 P_{\mathrm{BB}}(\alpha \beta) \\
& =2 s^{2} \tag{A4}
\end{align*}
$$

upon application of eqns. (A3). Per unit (110) area, we have $\Delta N_{\mathrm{BB}}=s^{2} / a^{2} \sqrt{ }$. A similar expression has been derived previously by Brown and Herman ${ }^{26}$.

(b) Short-range order - nearest-neighbor case

In the short-range ordered lattice, the nearestneighbor bonds are no longer identified by α and β sites. In this case, the number of BB pairs is given by

$$
\begin{equation*}
N_{\mathrm{BB}}=n\left\langle P_{\mathrm{BB}}\right\rangle \tag{A5}
\end{equation*}
$$

where n is the number of bonds and $\left\langle P_{\mathrm{BB}}\right\rangle$ is the average probability of a bond being a BB pair. The value of $\left\langle P_{\mathrm{BB}}\right\rangle$ is obtained from the Bethe SRO parameter σ^{25} :

$$
\begin{equation*}
\sigma=\frac{\left\langle P_{\mathrm{AB}}\right\rangle-2 x_{\mathrm{A}} x_{\mathrm{B}}}{\left\langle P_{\mathrm{AB}, \max }\right\rangle-2 x_{\mathrm{A}} x_{\mathrm{B}}}, \tag{A6}
\end{equation*}
$$

where $\left\langle P_{\mathrm{AB}}\right\rangle$ is the average probability of a bond being AB , and $\left\langle P_{\mathrm{AB}, \text { max }}\right\rangle$ is the value of $\left\langle P_{\mathrm{AB}}\right\rangle$ at maximum order. For $x_{\mathrm{A}}=x_{\mathrm{B}}=\frac{1}{2},\left\langle P_{\mathrm{AB}, \max }\right\rangle=1$ and thus

$$
\begin{equation*}
\sigma=2\left(\left\langle P_{\mathrm{AB}}\right\rangle-\frac{1}{2}\right) \tag{A7}
\end{equation*}
$$

The quantities $\left\langle P_{\mathrm{AB}}\right\rangle$ and $\left\langle P_{\mathrm{BB}}\right\rangle$ are related by the equation ${ }^{17}$

$$
\begin{equation*}
x_{\mathrm{B}}=\left\langle P_{\mathrm{BB}}\right\rangle+\frac{1}{2}\left\langle P_{\mathrm{AB}}\right\rangle . \tag{A8}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\left\langle P_{\mathrm{BB}}\right\rangle=\frac{1}{4}(1-\sigma) . \tag{A9}
\end{equation*}
$$

In the two unit cells of Fig. 1(a), there are $4\left\langle P_{\mathrm{AB}}\right\rangle=$ $1-\sigma \mathrm{BB}$ pairs in any of the four $\langle 111\rangle$ directions.

After (110)[111] slip, Fig. 1(b), the distribution in [111] and [111] remains unchanged. In [111] or [111], $\sigma=0$. Hence the number of BB pairs induced by slip is $\Delta N_{\mathrm{BB}}=\sigma$, or $\sigma / 2 a^{2} \sqrt{2}$ per unit (110) area, in the [111] or [111] direction.
(c) Long-range order - next-nearest-neighbor case

There are three $\langle 100\rangle$ next-nearest-neighbor directions. One of these, [001], lies on the slip plane, (110), and is not disturbed by slip. The other two, [010] and [100], will alter the atom pair distribution after slip.

In the two unit cells of Fig. 1(a), we have $N_{\alpha \alpha}=N_{\beta \beta}=2, N_{\alpha \beta}=0$ before slip, where $N_{\alpha \alpha}$ etc. are now referred to next-nearest-neighbor bonds. After slip, Fig. 1(b), $N_{\alpha \alpha}=N_{\beta \beta}=0, N_{\alpha \beta}=4$ in [010] or [100]. Hence the gain in BB pairs in either of these two directions is
$\Delta N_{\mathrm{BB}}=4 P_{\mathrm{BB}}(\alpha \beta)-2 P_{\mathrm{BB}}(\alpha \alpha)-2 P_{\mathrm{BB}}(\beta \beta)=-2 s^{2}$,
(A10)
or $-s^{2} / a^{2} \sqrt{ } 2$ per unit (110) area.
(d) Short-range order - next-nearest-neighbor case

For the next-nearest-neighbor case, the value of $\left\langle P_{\mathrm{AB}, \text { max }}\right\rangle$ in eqn. (A6) is zero, as complete order results in like-atom pairs in all NNN bonds. We then have, from eqn. (A6),

$$
\begin{equation*}
\sigma_{2}=1-2\left\langle P_{\mathrm{AB}}\right\rangle, \tag{A11}
\end{equation*}
$$

with σ_{2} denoting the SRO parameter for the NNN case. With the aid of eqn. (A8), eqn. (A11) becomes

$$
\begin{equation*}
\left\langle P_{\mathrm{BB}}\right\rangle=\frac{1}{4}\left(1+\sigma_{2}\right) . \tag{A12}
\end{equation*}
$$

Thus, from Fig. 1(a), the number of BB pairs in [010] or [100] is $4\left\langle P_{\mathrm{BB}}\right\rangle=1+\sigma_{2}$. After slip, $\sigma_{2}=0$. Hence the number of BB pairs gained by slip is $\Delta N_{\mathrm{BB}}=-\sigma_{2}$, or $-\sigma_{2} / 2 a^{2} \sqrt{2}$ per unit (110) area.

2. Calculation of BB-pairs resulting from $\{112\}\langle 111\rangle$ SLIP IN A $B 2$ STRUCTURE

(a) Long-range order - nearest-neighbor case

In the undeformed condition, there are two $\alpha \beta$ bonds per unit cell in each of four 〈111〉NN directions. After slip, these bonds change to an $\alpha \alpha$
bond and a $\beta \beta$ bond in the three $\langle 111\rangle$ directions other than the slip direction. Hence $\Delta N_{\mathrm{BB}}=$ $P_{\mathrm{BB}}(\alpha \alpha)+P_{\mathrm{BB}}(\beta \beta)-2 P_{\mathrm{BB}}(\alpha \beta)$. When values of eqns. (A3) are entered, we obtain $\Delta N_{\mathrm{BB}}=s^{2}$, or $s^{2} / a^{2} \sqrt{ } 6$ per unit $\{112\}$ area.

(b) Short-range order - nearest-neighbor case

Here, in the undeformed state, the two bonds per cell in each $\langle 111\rangle$ direction contribute $2\left\langle P_{\mathrm{BB}}\right\rangle$ pairs of BB bonds. From eqn. (A9), $\left\langle P_{\mathrm{BB}}\right\rangle=(1-\sigma) /$ 4. After slip, $\sigma=0$ and the gain in BB bonds is $\Delta N_{\mathrm{BB}}=\sigma / 2$, or $\sigma / 2 a^{2} \sqrt{ } 6$ per unit $\{112\}$ area, in the three $\langle 111\rangle$ directions other than the slip direction.

REFERENCES

1 S. Chikazumi, K. Suzuki and H. Iwata, J. Phys. Soc. Japan, 12 (1957) 1259.
2 S. Chikazumi, K. Suzuki and H. Iwata, J. Phys. Soc. Japan, 15 (1960) 250.
3 n. Tamagawa, Y. Nakagawa and S. Chikazumi, J. Phys. Soc. Japan, 17 (1962) 1256.
4 G. Y. Chin, J. Appl. Phys., 36 (1965) 2915.
5 G. Y. Chin and E. A. Nesbitt, J. Appl. Phys., 37 (1966) 1214.
6 E. Houdremont, J. Janssen, G. Sommerkorn and H. Fahlenbrach, Tech. Mitt. Krupp, 15 (1957) 13.
7 W. Baran, W. Breuer, H. Fahlenbrach and K. Janssen, Tech. Mitt. Krupp, 18 (1960) 81.
8a H. Fahlenbrach and W. Baran, Z. Angew. Phys., 17 (1964) 178.

8b H. Fahlenbrach, Tech. Mitt. Krupp, 23 (1965) 104.
9 W. C. Ellis and E. S. Greiner, Trans. Am. Soc. Metals, 29 (1941) 415.

10 N. S. Stoloff and R. G. Davies, Acta Met., 12 (1964) 473.
11 L. Néel, J. Phys. Radium, 15 (1954) 225.
12 J. B. Cohen and M. E. Fine, J. Phys. Radium, 23 (1962) 749.
13 J. F. W. Bishop and R. Hill, Phil. Mag., 42 (1951) 414, 1298.

14 J. F. W. Bishop, Phil. Mag., 44 (1953) 51.
15 G. I. Taylor, J. Inst. Metals, 62 (1938) 307.
16 G. Y. Chin, E. A. Nesbitt and A. J. Williams, Acta Met., 14 (1966) 467.
17 J. Kouvel and C. Hartelius, J. Appl. Phys., 33 (1962) 1343S.
18 M. M. Borodkina, E. I. Detalf and Ya. P. Selisski, Phys. Metals Metallog., 7 (2) (1959) 50.
19 Ya. P. Selisskii and M. N. Tolochko, Phys. Metals Metallog., 13 (4) (1962) 98.
20 A. T. English, Trans. Met. Soc. AIME, 236 (1966) 14.
21 R. C. Hall, Trans. Met. Soc. AIME, 218 (1960) 268.
22 G. W. Rathenau and J. A. Snoek, Physica, 8 (1941) 555.
23 H. W. Conradt and K. Sixtus, Z. Physik, 23 (1942) 39.
24 T. Muto and Y. Takagi, Solid State Phys., 1 (1955) 194.
25 L. Guttman, Solid State Phys., 3 (1956) 145.
26 N. Brown and H. Herman, Trans. AIME, 206 (1956) 1353.

